Functional compromises among pH tolerance, site specificity, and sequence tolerance for a DNA-hydrolyzing deoxyribozyme.
نویسندگان
چکیده
We recently reported the identification by in vitro selection of 10MD5, a deoxyribozyme that requires both Mn2+ and Zn2+ to hydrolyze a single-stranded DNA substrate with formation of 5′-phosphate and 3′-hydroxyl termini. DNA cleavage by 10MD5 proceeds with kobs=2.7 h(−1) and rate enhancement of 10(12) over the uncatalyzed P−O hydrolysis reaction. 10MD5 has a very sharp pH optimum near 7.5, with greatly reduced DNA cleavage rate and yield when the pH is changed by only 0.1 unit in either direction. Here we have optimized 10MD5 by reselection (in vitro evolution), leading to variants with broader pH tolerance, which is important for practical DNA cleavage applications. Because of the extensive Watson−Crick complementarity between deoxyribozyme and substrate, the parent 10MD5 is inherently sequence-specific; i.e., it is able to cleave one DNA substrate sequence in preference to other sequences. 10MD5 is also site-specific because only one phosphodiester bond within the DNA substrate is cleaved, although here we show that intentionally creating Watson−Crick mismatches near the cleavage site relaxes the site specificity. Newly evolved 10MD5 variants such as 9NL27 are also sequence-specific. However, the 9NL27 site specificity is relaxed for some substrate sequences even when full Watson−Crick complementarity is maintained, corresponding to a functional compromise between pH tolerance and site specificity. The site specificity of 9NL27 may be restored by expanding its “recognition site” from ATGT (as for 10MD5) to ATGTT or larger, i.e., by considering 9NL27 to have reduced substrate sequence tolerance relative to 10MD5. These findings provide fundamental insights into the interplay among key deoxyribozyme characteristics of tolerance and selectivity, with implications for ongoing development of practical DNA-catalyzed DNA hydrolysis.
منابع مشابه
Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA
We recently reported that a DNA catalyst (deoxyribozyme) can site-specifically hydrolyze DNA on the minutes time scale. Sequence specificity is provided by Watson-Crick base pairing between the DNA substrate and two oligonucleotide binding arms that flank the 40-nt catalytic region of the deoxyribozyme. The DNA catalyst from our recent in vitro selection effort, 10MD5, can cleave a single-stran...
متن کاملBioinformatics Designing of 10-23 Deoxyribozyme against Coding Region of Beta-galactosidase Gene
Background: Deoxyribozymes (Dzs) can play a role as gene expression inhibitors at mRNA level. Among Dzs, the 10-23 deoxyribozyme has significant potentials for treatment of diseases. Designed Dz includes a catalytic core made of 15 deoxyribonucleotides and two binding arms consisted of 6-12 nucleotides for site specific binding to target RNA and hydrolysis. The enzyme has characteristic feature...
متن کاملMerely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn/Mn) to monometallic (Zn-only) behaviorw
Metal ions can significantly expand the scope of macromolecular catalysis. For catalysts composed of nucleic acids (DNA or RNA), metal ions are typically required for both structural and catalytic roles. Divalent metal ions such as Mg, Mn, and Zn are often, but not always, obligatory cofactors for ribozymes and deoxyribozymes. We recently described the 10MD5 deoxyribozyme as an example of a hig...
متن کاملImproved deoxyribozymes for synthesis of covalently branched DNA and RNA
A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to i...
متن کاملAllosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates.
Allosteric control of deoxyribozymes is useful for a broad range of practical applications, such as nucleic acid sensing and DNA-computing. We found that the catalytic activity of a DNA-hydrolyzing deoxyribozyme could be allosterically regulated by adding short oligonucleotides. We used this technique to construct deoxyribozyme-based logic gates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 49 44 شماره
صفحات -
تاریخ انتشار 2010